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Abstract 
 

In this research, a mathematical formulation was developed for optimising the routing and 
scheduling of a set of heterogeneous ships carrying multiple products from various supply points to 
demand points. Ships have compartments for carrying multiple products between multiple supply 
points and multiple pick-ups/deliveries are allowed. Our formulation is an extension to those by 
Christiansen, Nygreen, Alkhayyal and Hwang (Christiansen, 1999; Christiansen & Nygreen, 1998a; 
Al-Khayyal & Hwang, 2007). A number of modifications were made to simplify the current 
formulation in literature by removing non-linear constraints and allow the model to be extended for 
more realistic multiple berths. The proposed model considers multiple commodities, multiple 
production points with associated production rates and various consumption points with associated 
consumption rates. Ships are heterogeneous and are able to carry multiple products in various 
compartments. Inventory levels at production and consumption points are constrained to be within 
specified bounds. The formulation is then solved based on a problem found in literature to obtain the 
optimal fleet routes and schedule, load/unload quantities and inventory levels for a planning horizon. 

 
 
1. Introduction 
 

Relative to trucking operations, maritime distribution has received much less attention. In 
particular, maritime inventory routing and scheduling, which is the problem of optimally routing 
ships, assigning departure/arrival times as well as maintaining appropriate inventory levels at harbours 
has not been well researched. This is despite the fact that ship fleets require larger capital and 
operating expenditures. Furthermore, 90% of volume and 80% of value of goods transported is carried 
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by sea (Psaraftis, 1998). Any improvement in fleet operation may result in significant financial results 
which lead to a considerable need for decision support systems in ship scheduling, (Christiansen et al., 
2004). 

 
Very few publications have explored inventory considerations in ship routing and scheduling. 

These considerations are especially relevant to vertically integrated companies that operate industrial 
shipping operations whereby the products and ships to carry those products are owned by the same 
organisation. The objective of an industrial ship scheduling problem is to minimise the sum of 
transportation costs for all ships in the fleet (Christiansen et al., 2004). Typical products in these 
operations include pulp, slurries, petroleum and petroleum pro ducts, ore, industrial chemicals, grain 
and other commodities. The objective of the current work is to modify the latest formulation in 
literature such that it is one step closer to be applied to a particular industrial operation. Adopting the 
most current network flow formulation in literature, extensions were made in order to simplify the 
present formulation and allow it to be extended for more realistic cases in the future. 
 
 
2. Literature Review 
 

Routing problems have greatly improved trucking operations (Al-Khayyal & Hwang, 2007). 
For the most current review of routing problems, please see Parragh (Parragh et al., 2008). Shipping 
however has received much less attention. This is despite the fact that 90% of volume and 80% of 
value of goods transported is carried by sea (Psaraftis, 1998). World fleet size has experienced 
continuous growth (Christiansen et al., 2004), while seaborne trade shown similar increases. Ronen 
(Ronen, 1983a) included, among others, factors such as lack of problem structure, greater 
uncertainties and a conservative industry as reasons for a lack of work done in this area. A fleet of 
ships require a major capital investment and daily operating costs of a ship are up to tens of thousands 
of dollars (Christiansen et al., 2004). Improving fleet operations can lead to significant improvements 
in financial results (Christiansen et al., 2004). Therefore, there is a considerable need for, and benefits 
from decision support systems in ship scheduling (Christiansen et al., 2004). Reviews in ship routing 
can be found in (Ronen, 1983a,b, 1995; Christiansen et al., 2004; Vis & de Koster, 2003). 

 
Long term ship routing decisions deal with strategic issues such as determination of fleet size 

and mix as well as permanent routing/scheduling. There are a number of works related to strategic 
aspects of shipping, namely Dantzig and Fulkerson, (Dantzig et al., 1954), Cho and Perakis (Cho & 
Perakis, 1996), Xinlian et al. (Xinlian et al., 2000), Fagerholt, (Fagerholt, 1999), Pesenti (Pesenti, 
1995), Fagerholt and Rygh (Fagerholt & Rygh, 2002), Mehrez et al. (Mehrez et al., 1995), Darzentas 
and Spyrou (Darzentas & Spyrou, 1996), Imai and Rivera (Imai & Rivera, 2001), Gunnarsson et al. 
(Gunnarsson et al., 2006), and Crary et al. (Crary et al., 2002). Shorter term decisions, also known as 
operational decisions seek to find the exact routes for each ship as well as quantities to be shipped. In 
addition, temporal considerations are addressed in scheduling formulations and inventory levels are 
addressed in maritime inventory routing problems. 

 
Ronen (Ronen, 1986) studied the scheduling of bulk or semi-bulk products from a central 

depot to several destinations. Heterogeneous ships with varying capacities were used. Ronen 
attempted and compared two heuristic methods and an optimisation algorithm based on a non-linear 
formulation. The optimisation algorithm, which is a biased random algorithm was found to provide 
good solutions that were close to optimal. Brown et al. (Brown et al., 1987) considered the routing 
and scheduling of crude oil between three continents. Each trip was a full shipload and consisted of a 
single loading port as well as a single unloading port. Constraints on loading/unloading durations 
were included. Brown et al. formulated the problem as an SP model, used enumeration to generate all 
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feasible schedules and selected the best one. Optimal integer solutions to this problem with thousands 
of binary variables were obtained in less than a minute. Fisher and Rosenwein (Fisher & Rosenwein, 
1989) extended this problem to allow multiple pickups from various harbours and deliveries to 
multiple destinations within time windows. Set partitioning was used to solve this problem. 
Reasonable run times were obtained and solutions achieved were projected to save up to US$30 
million over the existing manual system. Hvattum et al. (Hvattum et al., 2009) looked into the 
problem of how to optimally allocate loads to tanks for a given ship route. A formulation was 
introduced as a starting point for this problem. Bausch et al. (Bausch et al., 1998) modeled the 
distribution of various liquid bulk products between plants, distribution centers and customers. Each 
ship consisted of various compartments that can be used to carry various products. Loads were pre-
assigned to vessels and time windows for loading/unloading were specified. Bausch et al. enumerated 
all feasible schedules for all vessels and the best one was retained using the method described in 
(Brown et al., 1987). The optimised fleet schedule has an hourly time resolution over a planning 
period of two to three weeks.  

 
Sherali et al. (Sherali et al., 1999) studied a similar problem to (Bausch et al., 1998) where the 

distribution system serves to ship crude oil and oil products from the Middle East to locations around 
the world. Sherali et al. distinguished between company controlled vessels and spot-chartered vessels. 
Furthermore, several routes may exist between any two harbours that have trade-o s between time and 
transportation costs. A heuristic was used to solve the problem which was formulated as a mixed 
integer program. The schedule obtained was found to be substantially better than the practice at the 
time. Fagerholt and Christiansen (Fagerholt & Christiansen, 2000a) explored the shipping of dry bulk 
products and allowed multiple pick up and delivery along with time windows. Set partitioning, using a 
method as described by Fagerholt and Christiansen (Fagerholt & Christiansen, 2000b) was used to 
solve the problem. The proposed approach was used to obtain optimal solutions for a real ship 
planning problem. Papadakis and Perakis (Papadakis & Perakis, 1989) studied distribution of a single 
bulk product to several destinations using a  fleet of ships. Ships load at an origin, unload at a 
destination and returns to its original harbour. Optimal speeds were also considered. Papadakis and 
Perakis used a solution method that is based on separating the speed selection from ship allocation 
using Lagrangian relaxation. Jetlund and Karimi (Jetlund & Karimi, 2004) sought to determine the 
maximum profit schedule for delivering multiple liquid bulk products. Time windows constrain when 
the product is to be delivered from the load harbour to the unload harbour. Jetlund and Karimi used a 
heuristic method to obtain superior schedules as compared to schedules used by a shipping company. 
The preceding publications however do not include inventory considerations at the plants, distribution 
centers, or destinations. Industrial shipping operations however, are typical of vertically integrated 
companies which may own the products, distribution depots as well as the ships used to transport the 
products. As such, it is only natural to include inventory considerations at these facilities. Fagerholt 
and Linsdstad, (Fagerholt & Lindstad, 2007) described the implementation of an interactive decision 
system for ship scheduling and reported ‘significant’ improvements. Christiansen and Fagerholt 
(Christiansen & Fagerholt, 2002) used a partitioning approach for for a ship scheduling problem with 
time windows. The method resulted in improved schedule robustness at the price of higher 
transportation costs. Dauzère-Pérès et al., (Dauzère-Pérès et al., 2007) described a decision support 
system based on a memetic algorithm for a company supplying calcium carbonate slurry from a single 
processing plant. A reduction of 10% in oil consumption was reported. Korsvik and Fagerholt 
(Korsvik & Fagerholt, 2008) used a tabu search heuristic to maximize profit for a tramp shipping 
operation. The formulation allowed  flexible cargo quantities and this was observed to improve the 
solutions. Karlaftis et al. (Karlaftis et al., 2009) used a hybrid genetic algorithm to determine the 
optimal routing for containerships in the Aegean Archipelago. 
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Many problems (40%) in ship routing and scheduling were solved using set partitioning 
(Christiansen et al., 2004). The advantage is that complex and nonlinear constraints can be 
incorporated during column generation and these columns can be generated via heuristics. Ship 
scheduling formulations are usually tightly constrained and therefore it may be possible to generate all 
feasible candidate schedules. If the number of feasible schedules is large then, heuristics can be used 
to generate promising schedules only (Christiansen et al., 2004). 

 
Relatively few publications have explored inventory considerations in ship routing and 

scheduling. These considerations are especially relevant to vertically integrated companies that 
operate industrial shipping operations whereby the products and ships to carry those products are 
owned by the same organisation. The objective of an industrial ship scheduling problem is to 
minimise the sum of transportation costs for all ships in the fleet (Christiansen et al., 2004). Typical 
products in these operations include pulp, slurries, petroleum and petroleum products, ore, industrial 
chemicals, grain, and other commodities. Miller (Miller, 1989) originally investigated the maritime 
inventory routing problem. The problem addressed is a scheduling and inventory resupply problem at 
a chemical company that transports various chemicals from one source to multiple destinations. 
Inventory levels must be maintained within bounds. Miller proposed an interactive solution, using 
manual and automatic techniques to obtain solutions. Christiansen (Christiansen, 1999) combined ship 
scheduling with the problem of maintaining inventory levels at plants around the world that produce 
or consume a single product. Quantity loaded/unloaded must be determined by the solution. The 
problem was solved by decomposing the problem into two subproblems and using dynamic 
programming to obtain the final solution. Shen et al. (Shen et al., 2008) used the GRASP heuristic to 
solve the problem of transporting crude oil from a single source using a  fleet of heterogeneous 
tankers and a pipeline to minimise inventory and transportation cost. Ronen (Ronen, 2002) studied an 
inventory routing problem with multiple products.  

 
The problem is expressed as a mixed integer program and solved using a commercial 

optimisation suite for small instances. A heuristic was also used to obtain acceptable solutions 
quickly. Ronen, (Ronen, 2002) separated the shipments planning from ship scheduling and considered 
only discrete time dimension (days). Ship voyages have a single loading and single unloading 
locations. Vukadinovic and Teodorovic (Vukadinovic & Teodorovic, 1997) studied the problem of 
transporting gravel using inland waterway. Fuzzy logic was used to acquire the dispatcher’s heuristic 
rules into an automatic strategy. Christiansen and Nygreen (Christiansen & Nygreen, 1998a) studied 
the combined inventory management and ship routing problem with time windows. The problem 
involved a fleet of ships carrying a single product between production and consumption harbours. 
Each harbour has a production or consumption rate that influenced the quantities loaded or unloaded. 
Ships were allowed to perform multiple pickups at various production harbours and multiple 
deliveries at consumption harbours. Christiansen and Nygreen formulated this problem as a mixed 
integer linear program and solved it using the Dantzig-Wolf decomposition and branch-and-bound. 
Column generation was performed using the method as described in (Christiansen & Nygreen, 
1998b). This problem was then reformulated as a network model by Christiansen in (Christiansen, 
1999) and solved using the method described in (Christiansen & Nygreen, 1998a). Cheng and Duran 
(Cheng & Duran, 2004) used Markov decision process and dynamic programming to solve small scale 
problems for the transportation of crude oil. Persson and Gőthe-Lundgren (Persson & Gőthe-
Lundgren, 2005) studied the problem of transporting bitumen products from refineries to a set of 
depots. Column generation was used to solve the problem with soft inventory constraints. 

 
Al-Khayyal and Hwang extended the model in (Christiansen & Nygreen, 1998a; Christiansen, 

1999) to include multiple products. Each ship has compartments that were dedicated to specific 
products. The problem was formulated as a mixed integer linear program using various linearisation 
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schemes and small instances were solved using a commercial optimisation suite. Multiple ships were 
allowed to arrive at a harbour at the same time, simulating multiple berths. Our formulation is a 
modification to those by Christiansen, Nygreen, Alkhayyal and Hwang (Christiansen, 1999; 
Christiansen & Nygreen, 1998a; Al-Khayyal & Hwang, 2007). Similar to previous publications, we 
consider the routing and scheduling for distributing multiple products using a heterogeneous  fleet of 
ships. Ships have compartments for carrying multiple products between multiple supply points and 
multiple pick-ups/deliveries are allowed. 

 
In maritime routing and scheduling literature, a number of overlapping terms are commonly 

used that require clarification, including ports, harbours, terminals and berths. Harbour is a general 
area where ships can be accommodated and can be natural or man-made. A man-made harbour is 
known as a port. A terminal is a built facility where products are transferred from/to ships. For the 
purpose of this paper, harbours, ports and terminals will be considered synonymous. A berth is a 
specific location within a harbour or port for ships to moor for the purpose for loading or unloading 
products. Structures that may be considered synonymous to berths within the context of mathematical 
formulations presented here are quays, wharfs, jetties and piers. 
 
 
3. Mathematical Formulation 
 

The formulation presented here is developed along the lines of Christiansen, Nygreen, Al-
Khayyal and Hwang (Christiansen, 1999; Christiansen & Nygreen, 1998a; Al-Khayyal & Hwang, 
2007), with modifications to prevent undesirable results, simplify as well tighten various constraints, 
and allow the model to be extended for more realistic multiple berths. The formulation is largely 
adopted from, and therefore closely resembles the one in Al-Khayyal and Hwang (Al-Khayyal & 
Hwang, 2007), the most recent publication in this area. Explanation of the constraints is also adopted 
accordingly, while additions to constraints are explained in the same format. 

 
The distribution system consists of a set of harbours, a set of products and a set of ships to 

carry products between harbours. The average production and consumption rate for each product at 
each harbour within the planning horizon is known. Ships are compartmentalised and may carry more 
than one product at a time. Also, ships are heterogeneous with varying capacities for different 
products, different cost parameters, and are able to carry different sets of products. Inventory levels at 
each harbour must be maintained within the storage capacity. A ship may perform multiple pick-ups 
and multiple drop-offs at various harbours. The time it takes to load/unload products at each harbour 
is known. The objective is to obtain the routing and schedule for each ship as well as quantities to be 
loaded/unloaded that minimises the total fuel costs, port and canal dues, and loading/unloading 
charges over a planning horizon. 

 
The distribution system is modeled as an arc flow formulation. Constraints for routing, 

loading/unloading, time aspects and inventory are then added to the arc flow formulation. Similar to 
the convention used in (Al-Khayyal & Hwang, 2007), decision variables are presented in lower case 
letters while parameters and sets are in upper case. 
 
3.1 Routing 
 

The basis of the formulation is a network with nodes (i,m), where i signifies a harbour, and m 
signifies the arrival number at a particular harbour. The set element (i,m) is called a position. Each 
harbour has a specified set of available arrival numbers {1, 2, ..., µ}. HT is the set of all harbours, M 
the set of available numbers and S the set of possible harbour-arrival pairs; i.e.,                                                    
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ST  = {(i,m)| i HT , m Mi}. Av is the set of all feasible arcs for ship v.  
 
At the beginning at each planning horizon, each ship is assumed to be occupying an initial 

position (iv,mv) ST. If ship 2 is located at harbour 3 for instance, then i2 = 3, and if it is the only ship 
at that harbour at the beginning of the planning horizon, then    mv = 1. The set of all initial positions is 
then S := {(i,m) | v V}. Further, S := ST \ S0  is the set of new available positions that ships can 
occupy after leaving their initial positions. The arc flow variable ximjnv is set equal to 1 if ship v   V 
travels from position (i,m) to position (j,n) where (i,m) ST and (j, n) SN. 
 
Initial position The route end variables zimv is set to 1 if ship v ends its route at position (i,m). 
Constraints (1) require that the arc  flow variable be set to 1 as ship v travels from initial position (i,m) 
to another position (j,n). If the ship does not depart to other harbours then zivmvv = 1. 
 

,1
),(




vmi
Snj

jnvmi vv

N

vv
zx  for every .Vv       (1) 

 
 
Route continuation Constraints (2) ensure that if ship v arrives at position (i,m), then there is a 
corresponding departure from that position, ximjnv, or the ship’s journey may be terminated at (i,m) by 
setting zimv = 1. 
 
 

,0
),( ),(
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Route finishing constraints that ensure that ships terminate their journeys in harbours at the end of the 
planning horizon are omitted here since in practice, ships may be mid-ocean at the end of the period. 
 
Single visit Constraints (3) require that position (i,m) is visited at most once. If (i,m) is not visited at 
all during the planning period, then the slack variable yim is set to 1. 
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Intra-harbour travel Constraints (4) prevent ships from moving between different positions in the 
same harbour; i.e., ships can only travel between different harbours. Without these constraints, 
numerical experiments resulted in ships moving within the same harbour. 
 

,0imjnvx  for every VvSnjSmi TT  ,),(,),( and .ji       (4) 

Position sequence Constraints (5) require that positions are sequentially occupied. The first 
arrival to a harbour should occupy position m = 1, the second, position m = 2 and so on. Constraints 
(5) ensure that there will not be a case of position m = 2 being occupied while position m = 1 being 
empty. 
 

,0)1(  miim yy  for every .),( NSmi        (5) 
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3.2 Loading and unloading 
 

A number of parameters are introduced to specify the loading and unloading constraints. Jik is 
specified as equal to +1 if harbour i is a producer of product k, and -1 if it is a consumer. qimvk is the 
quantity of product k loaded onto, or unloaded from ship v depending on J at that harbour. limvk  is the 
quantity of product k onboard ship v at the moment it departs position m at harbour i. Servicing 
variable oimvk is set to 1 if product k is serviced at harbour i and 0 otherwise. Qvk is the initial quantity 
of product k already loaded onto ship v at the start of the planning horizon. CAPvk  is the capacity of a 
dedicated compartment on ship v to carry product k. Kv denotes the set of products that ship v can 
carry. 
 
Loading As a ship v travels from (i,m) to (j,n), the quantity of product k onboard at the moment of 
departure from (j,n) is equal to the quantity loaded at (j,n) plus the quantity on board when it left (i,m) 
to (j,n): limvk. This constraint should hold true whenever ship v travels from (i,m) to (j,n); i.e., ximjnv = 1. 

 
,0)(  jnvkjnvkjkimvkimjnv lqJlx  for every .),,,,(, vv KAknjmiVv    (6) 

 
 
Constraints (6) are nonlinear and are linearised in (Christiansen, 1999; Al-Khayyal & Hwang, 2007) 
as follows: 
 
 

,vkimjnvvkjnvkjnvkjkimvk CAPxCAPlqJl   for every .),,,,(, vv KAknjmiVv   (7) 

 
,vkimjnvvkjnvkjnvkjkimvk CAPxCAPlqJl   for every .),,,,(, vv KAknjmiVv  (8) 

 
 
Initial ship loading The following constraints ensure that livmvvk , the quantity of product k on board v 

at the moment of departure from its initial position (iv,mv), is the sum of the initial quantity v already 
on board, Qvk plus (if Jivv = +1 and minus if J = -1) the quantity loaded (unloaded if J  = -1) at the 

initial position qivmvvk . 

 
,0 vkmivkmikivk vvvvv

lqJQ  for every ., vKkVv       (9) 

 
Non-ship-arrival inventory Constraints (10) require that if ship v does not arrive at (i,m), then no 
product can be loaded/unloaded onto/from v at (i,m); i.e., qimvk = 0. Similar constraints, (11) are 
formulated for the initial conditions. Constraints (10) and (11) serve to tighten the formulation such 
that the departure time will equal the arrival time in (15) whenever there is no arrival at (i,m). These 
constraints allow simplification of the model by allowing simpler inventory level constraints at the 
end of the planning horizon (see constraints (22)). 
 

,



TSjn

imvkjnimvvk qxCAP  for every .,),(, VvSmiKk Nv      (10) 

 
Compartment capacity Constraints (12) ensure that limvk, the quantity of product k on board v at the 
moment of departure from (i,m) does not exceed the ship’s physical compartment capacity, CAPvk for 
that product. limvk is set to 0 if there are no ships visiting (i, m);  
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i.e.,   .0
),(


 TSnj

          (11) 

 


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
TSnj

jnimvvkimvk xCAPl
),(

,  for every .),,(, NV SKmikVv       (12) 

 
Product servicing The product servicing variable, oimvk indicates whether product k is loaded or 
unloaded at (i,m). oimvk needs to take on a value of 1 if k is loaded/unloaded at (i,m), and 0 otherwise. 
This is expressed as the following constraints. 
 

imvkvkimvk oCAPq   for every .),,(, TV SKmikVv      (13) 

 
 3.3 Timing 
 

A number of parameters are introduced to define the arrival and departure times. tim denotes 
the time of arrival at position (i,m) while tEim denotes the departure time. TQik represents the time 
required to load/unload one unit of product k at harbour i. Wi is the set-up time to service any product 
at harbour i. Tijv is the time it takes for ship v to travel from harbour i to j. 
 
Service time sequence Constraints (14) require that the mth visit take place after the (m-1)th departure. 
This is a deviation from (Al-Khayyal & Hwang, 2007) which requires the mth arrival take place after 
the (m-1)th arrival. This modification is to allow only one ship at a harbour at any one time. 
 

,0)1(  mEiim tt  for every .),( NSmi        (14) 

 
 

Service time Constraints (15) relate the arrival and departure times at position (i,m). The departure 
time, tEim from position (i,m) is equal to the arrival time, tim, plus the service and setup times for all 
products. 
 

 
   
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Routing and scheduling Constraints (16) relate the departure time from position (i,m) to the arrival 
time at (j,n) whenever ship v travels between those harbours; i.e., ximjnv = 1. 
 

,0)(  jnijvEimimjnv tTtx  for every .),,,(, vAnjmiVv      (16) 

 
 
Constraints (16) are nonlinear and are linearised in (Al-Khayyal & Hwang, 2007) as follows: 
 
 

,22 TTxtTt imjnvjnijvEim   for every .),,,(, vAnjmiVv     (17) 
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3.4 Inventory levels 
 

Inventory constraints describe the relationship between quantities at harbours before and after 
each arrival to the quantities on board ships when they arrive to and depart from harbours. simk denotes 
the quantity of product k in harbour i at the time of the mth arrival while sEimk is the quantity at the time 
of departure. Ki

H  is the set of products serviced by harbour i. If Jik = -1, Rik  is the rate at which 
product k is consumed at harbour i. If Jik = +1, then Rik  is the rate of production. SMNik is the minimum 
allowable stock level of product k at harbour i, while SMXik is the maximum. 
 
Initial inventory levels Constraints (18) require that the quantity of product k at the time of the first 
arrival to harbour i be equal to the initial inventory, ISik plus (if Jik  = +1 or minus if Jik   = -1) the 
amount produced (or consumed) up until the first arrival. 
 

,11 iikikikki tRJISs   for every .),( H
iN KHki      (18) 

 
For harbours that already have ships at the beginning of the planning horizon, H0, ti1 = 0 such that si1k 
= ISik. 
 
Inventory levels between arrivals and departures The following constraints enforce the inventory 
levels between the time of arrival of ship v to harbour i at position m and the time of departure from 
that position. The inventory level at departure is equal to the inventory level at arrival plus (if Jik = +1, 
or minus if Jik = -1) the amount of product k produced (or consumed if Jik = -1) between the arrival 
and departure times. 
 

,0)( 


Eimk
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imEimikikimvkikimk sttRJqJs  for every .),,( H
iT KSkmi  (19) 

 
 
Inventory levels between arrivals Constraints (20) enforce the inventory levels between two 
successive arrivals to harbour i. The inventory level of product k at the time of the mth  arrival to 
harbour i, simk is equal to the inventory level at departure from the previous position (m - 1), sEi(m-1)k 
plus (if Jik = +1, or minus if Jik = -1) the amount produced (if Jik = +1) or consumed (if Jik  = -1) 
between those times. A previous formulation used a non-linear constraint to allow multiple ships to be 
in one harbour at the same time. This however, makes it difficult to add constraints later to track and 
limit the number of ships in one harbour. As this research will require modeling of harbours with 
multiple berths, another formulation is adopted, which is presented but not used in (Al-Khayyal & 
Hwang, 2007). Therefore, any linear reformulation and their associated additional variables are no 
longer necessary. 
 

,0)( )1()1(   imkmEiimikikkmEi sttRJs  for every .),,( H
iN KSkmi   (20) 

 
 
Inventory level bounds Constraints (21) was presented in (Al-Khayyal & Hwang, 2007) to ensure that 
inventory levels at harbours are within bounds. The term Jik Rik (T - tEim)(yi(m+1) - yim) ≤ SMXik is 
activated whenever yim is the last arrival; i.e., yi(m+1) - yim = 1. This however, requires that additional 
constraints be formulated such that there exists yi(m+1) - yim = 1 for every harbour. 
 

,0)( )1()1(   imkmEiimikikkmEi sttRJs  for every .),,( H
iN KSkmi   (21) 

Constraints (23) to (24), adopted from (Christiansen, 1999) are used instead to ensure that inventory 
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levels remain within the required limits at harbour i at all times within the planning horizon. 
Constraints (10), (11) resulted in a tighter formulation which ensure that limvk, qimvk  = 0 if there are no 
arrivals to (i,m), and as such timk, tEimk, simk, sEimk, are correct from (15), (24). By eliminating (21), a 
non-linear constraint, the associated linear reformulation and additional variables are no longer 
necessary. 

 

,MXikimkMNik SsS   for every .),,( H
iT KSkmi      (22) 

 

,MXikEimkMNik SsS   for every .),,( H
iT KSkmi      (23) 

 

,)( MXikEimikikEimkMNik StTRJsS   for every .,, i
H
i mKkIi   (24) 

 
3.5 Objective function 
 

As in (Christiansen, 1999; Al-Khayyal & Hwang, 2007) the objective function is set to 
minimise the total operating cost over the planning horizon. The total operating cost is comprised of 
traveling costs and loading/unloading cost. Traveling costs include fuel and ship operating costs, 
while loading/unloading costs include port operations, duties, agent fees, berthing charges, etc. Cijv 

denotes the total traveling cost for ship v from harbour i to j and is assumed to be independent of all 
other variables. CWik, on the other hand is the loading/unloading costs of product k at harbour i and is 
again assumed to be independent of all other variables. The objective function therefore, is to 
minimise (25) subject to constraints presented earlier. 

   
    


Vv Anjmi Smi Vv Kk

imvkWikimjnvijv

v T v

oCxC
),,,( ),(

     (25) 

 
3.6 Summary of extensions to formulations in literature 
 

This following summarizes modifications to formulations in literature. 
 

1. In order to prevent ships from being routed to another arrival number within the same 
harbour, constraints (4) were added to the formulation. 
 
2. Constraints (10) and (11) were added to ensure that qimv = 0 if ship v does not make any 
visits to position (i,m) throughout the planning horizon. A positive value for qimv even though 
there is no ship arrival to position (i,m) by ship v leads to an incorrect value for ljnvk due to 
constraints (7) and (8), as well as incorrect values for tEim due to constraints (15). An incorrect 
value for tEim in turn, would lead to incorrect values for sEi(m-1) due to constraints (20). 
Incorrect values for the departure time, inventory levels at harbour and onboard thereby, leads 
to an invalid schedule. 
 
3. These constraints (21) rely on the expression yi(m+1) - yim  being equal to 1 at some position 
(i,m) in each harbour. Due to constraints (3), yim has been constrained to be equal to 0 
whenever there is a ship arrival and 0 otherwise. Therefore, the expression yi(m+1) - yim  is 
expected to equal to 1 whenever (i,m) is the last position visited. Constraints (3), however only 
applies for positions (i,m)SN , leaving the initial positions yim, (i,m) S0 free to take on either 
1 or 0. This may lead to the expression yi(m+1) - yim  not being equal to 1 if there are no ship 
arrivals to that harbour. Therefore, constraints (21) will not necessarily be activated to check 
inventory levels at the end of the planning horizon for this harbour. Rectifying this would 
require additional constraints to ensure that yi(m+1) - yim  = 1 exists for each harbour. However, 
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another modification is proposed as follows which serves to alleviate the problems above and 
result in a simpler overall formulation. 
 
Constraints (21) are removed (along with ten linearised equations and two associated 
variables, and replaced with constraints (23) and (24). Using constraints (24) removes the 
requirement of introducing additional constraints to ensure that yi(m+1) - yim = 1 exists for each 
harbour. As constraints (10) and (11) have been introduced, departure times tEim would equal 
the previous departure time if there are no arrivals at (i,m). This means that tEim at the last 
position is equal to the last departure time from that harbour. Constraints (24) therefore check 
the inventory level at the end of the planning horizon. 
 
4. In order to allow only one ship to dock at any harbour at any one time, the time sequence 
constraints, (14) were modified accordingly such that a ship’s arrival takes place only after the 
previous ship has departed. These modifications are expected to allow easier modification of 
the formulation to allow a more realistic representation multiple berths in the future. 
Constraints (20) are linear and do not necessitate additional decision variables. 

 
 
4. Example Problem and Results 
 

A small example problem as described in (Al-Khayyal & Hwang, 2007) is adopted for the 
purpose of testing and validating the formulation in Section 3. The example problem is summarised in 
the following paragraph. 

 
The distribution system consists of 2 ships (V = {1, 2}) traveling between 3 harbours (HT = {1, 

2, 3}). Each harbour services 2 products (Ki
H= {1, 2}, iHT). Parameters for harbours and ships are 

summarised in Tables 1 and 2 respectively. Traveling time is assumed to take 0.3 days between any 
two harbours Tijv = 0.3,  i, j   HT, i ≠ j, v   V . For ship 1, it costs $1 to travel between any two 
harbours (Cij1 = $1,  i, j   HT, i ≠ j ), while it costs $1.50 for ship 2 (Cij2 = $1.50, i, j   HT, i ≠ j). 
Further, it costs $0.50 to load or unload one unit of any product at any harbour (CWik = $0.50,  i  
HT, k   Ki

H ). Unit loading/unloading time for any product at any harbour is 0.01 days (TQik = 0.01, 
 i  HT, k   Ki

H) while set up time is 0 (Wi = 0,  i  HT).  
 

Table 1 Harbour Parameters 
 

Harbour, i 1 2 3 
Product, k 1 2 1 2 1 2 
Inventory lower bound, SMNik 0 0 0 0 0 0 
Inventory upper bound, SMXik 20 30 20 20 20 20 
Production/consumption rate, JikRik -10 20 5 -10 5 -15 
Initial inventory, ISik 10 15 5 15 10 15 

 
Table 2 Ship Parameters 

 
Harbour, i 1 2 

Product, k 1 2 1 2 
Inventory lower bound, SMNik 0 0 0 0 
Inventory upper bound, SMXik 20 30 20 20 
Production/consumption rate, JikRik -10 20 5 -10 
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The problem is solved to optimality using the linear optimisation suite ILOG CPLEX on a 
personal computer and a solution time of less than a second was obtained. Results for decision 
variables are presented in Table 3. 
 
Table 3 Results for Decision Variables 

 
                   

Upon inspection, decision variables comply with all constraints as specified in Section 3 and 
an optimal transportation cost is obtained equivalent to literature. Further inspection reveals that ship 
movements and loading/unloading activities demonstrate sensible behaviour in the physical world. 
Furthermore, inventory levels for all products at all harbours are within capacity limits as shown in 
Figures 2 to 7. An example interpretation of the decision variables at t = 0.10 day is described in the 
following paragraph. 

 
At time, t = 0.10 day (Figure 1), Ship 1 is en route to (i,m) = (2,1), while Ship 2 has just 

completed loading and is routed to (i,m) = (1,2) from Harbour 1. Inventory levels during departure of 
Ship 2 at Harbour 3 are still within bounds (s311= 0.50, s312 = 13.50). The complete interpretation of 
the decision variables are found in Appendix A. 
 

 
 

Figure 1 Time, t = 0.10 Day 
 

 
 

Figure 2 Product 1 in Harbour 1 
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Figure 3 Product 2 in Harbour 1 
 

 
 

Figure 4 Product 1 in Harbour 2 
 

 
 

Figure 5 Product 2 in Harbour 2 
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Figure 6 Product 1 in Harbour 3 
 

 
 

Figure 7 Product 2 in Harbour 3 
 
 
6. Computation Load Results 
 

To understand the model’s ability to handle realistic instances, a number of numerical 
experiments were performed on test instances. Instances were generated by gradually increasing the 
case complexity through increased available positions, number of products, number of harbours and 
number of ships in the distribution system. 

 
First, the test case in Section 4 is taken as the base case and the number of available positions 

µ is added successively while randomly modifying other instance parameters. 20 random instances 
were tested over µ values of 3, 4, 5 and 6. Average solving times are shown in Figure 8. 
Second, another 20 random instances were generated over increasing number of products, K. Figure 9 
show average solving times for varying K. 

 
Finally, another 20 instances were generated for increasing number of ships, V. As the number 

of ships is increased, the number of harbours is to be serviced, H. In the convention of the original test 
example above, the number of ships kept to one less than the number of harbours. Figure 10 indicates 
the solving times with respect to increasing number of ships and harbours. 
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Figure 8 Solving Times as µ is Increased 
 
 

 
 

Figure 9 Solving Times as K is Increased 

 
 

Figure 10 Solving Times as V = H – 1 is Increased 
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Figures 8, 9 and 10 indicate substantial increases in the average solving times with increasing 
complexity of the case instance, although the effect is less pronounced when the number of products 
is increased. Al-Khayyal and Hwang (Al-Khayyal & Hwang, 2007) reported an exponential increase 
in solving time as the number of available positions is increased. However, it is noted that there is 
great variability in the solving times even for cases with the same level of complexity (same number 
of µ, K , V or H). 
 
 
7. Conclusion 
  

In this research, a mathematical formulation was developed and then solved based on a 
problem found in literature. An optimal solution was obtained and ship movements and 
loading/unloading activities demonstrated sensible behaviour. This formulation contains a number of 
extensions to improve the current formulation, simplify the current formulation in literature by 
removing unnecessary non-linear constraints and allow the model to be extended for more realistic 
multiple berths. 
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