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Abstract 

The Capacitated Vehicle Routing Problem (CVRP) is a well known problem in the optimization 
literature. In this paper, we consider that there is a single depot (or distribution centre) that caters to the 
customer demands at a set of sales points (or demand centers) using vehicles with known limited 
capacities. The demand at each of these demand centers is assumed to be constant and known. Due to its 
limited capacity, the vehicles may need to make several trips from the depot for replenishment. The 
problem is to determine an optimal distribution plan that meets all the demands at minimum total cost. 
We propose a heuristic based on the well-known column generation approach to solve this problem. A 
sub-problem is then solved to generate additional columns for the master problem. This paper examines 
an approach for generating “good” columns (or distribution plans) together with heuristics for 
sequencing the customers within each distribution plan. The results are then compared to those obtained 
by using the genetic algorithm to demonstrate the performance of the methods.  
 
Keywords: Column Generation, Complete Enumeration, Genetic Algorithm, Capacitated Travelling 
Salesman 
 
 
1. Introduction 

The Capacitated Vehicle Routing Problem (CVRP) requires the determination of an optimal set 
of routes for a set of vehicles to serve a set of customers. The problem as it appears in real life may have 
several additional constraints, such as limits on the capacity of the vehicles, time windows for the 
customer to be served, limits on the time that a driver can work, limits on the lengths of the routes, etc. 
The problem was first introduced by Dantzig and Ramser, 1959. Due to the intrinsic interest as a 
difficult combinatorial optimization problem and to the economic importance of applications, CVRP has 
received a lot of attention and many algorithms, both exact and heuristic, have been developed since 
then to solve the general problem as well as real world cases, and so literature on the subject is very 
extensive. An excellent survey of these techniques can be found in Laporte and Semet, 1999.  
 

As in most NP-hard problems, three approaches are typically employed to solve these types of 
problems: heuristics, approximation methods and exact methods. While heuristics do not provide 
guarantees about the solution quality, they are useful in practical contexts because of their speed and 
ability to handle large instances. A special class of heuristics is meta-heuristics, which are general 
frameworks for heuristics. Approximation algorithms are a special class of heuristic that provides a 
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solution and an error guarantee. Exact methods guarantee that the optimal solution is found if the 
method is given sufficiently time and space.  
 

This paper deals with the following variant of the Capacitated Vehicle Routing Problem (CVRP): 
a single depot where routes begin and end provides service to a set of customers and their known 
demands, with a single vehicle or several similar vehicles with a maximum weight that each can load, 
and distances (or costs) between customers and between customers and the depot. It is assumed that 
distances satisfy triangular inequality. We want to find routes for the vehicles starting and ending at the 
depot that satisfy the demand at a minimum total cost. 
 
 
2. Literature Review 

Dantzig and Ramser, 1959 consider the routing of a fleet of gasoline delivery trucks between a 
bulk terminal and a number of service stations supplied by the terminal. The distance between any two 
locations is given and a demand for a certain product is specified for the service stations. The problem is 
to assign service stations to trucks such that all station demands are satisfied and total mileage covered 
by the fleet is minimized. The authors imposed the additional conditions that each service station is 
visited by exactly one truck and that the total demand of the stations supplied by a certain truck does not 
exceed the capacity of the truck. The problem formulated was given the name ‘truck dispatching 
problem’. The name VRP is more recent and the variant of the VRP is given the name ‘Capacitated 
Vehicle Routing Problem (CVRP)’. 
 

Several families of heuristics have been proposed for the Vehicle Routing Problem. These can be 
broadly classified as: classical heuristics developed mostly between 1960 and 1990, and metaheuristics 
whose growth has occurred over the last two decades. Most standard construction and improvement 
procedures that are in use today can be termed classical. These methods perform a relatively limited 
exploration of the search space and typically produce good quality solutions within modest computing 
times. 
 

Classical VRP heuristics can be further classified into three broad categories: Construction 
heuristics, Two-phase heuristics and Improvement heuristics. Construction Heuristics build a feasible 
solution while trying to minimize solution cost, but do not contain an improvement phase. Two phase 
heuristic decomposes the problem is into its two natural components: clustering of vertices (customers) 
into feasible routes and actual route construction. Two-phase heuristics can be of two types: cluster first, 
route second methods and route first, cluster second method. In the first case, vertices are first organized 
into feasible clusters, and a vehicle route is constructed for each of them. In the second case, a tour is 
first built on all vertices and it is subsequently segmented into feasible vehicle routes. Finally, 
improvement heuristics attempt to upgrade any feasible solution by performing a sequence of edge or 
vertex exchanges within or between vehicle routes. An excellent discussion of classical heuristics for the 
VRP can be found in Bodin et al., 1983, Golden and Assad, 1988 and Fisher, 1995. 

 
 
 
 
 



119
International Journal of

Management, Business, and EconomicsIJMBE

3. Problem Formulation 
 
The following VRP formulation is due to Fisher and Jaikumar, 1981. 
 
Constants 
K= number of vehicles 
n= no. of customer to which a delivery must be made. Customers are indexed from 1 to n and index 0 
denotes the central depot. 
bk = capacity of vehicle K. 
ai = demand of customer i 
cij = cost of direct travel from customer i to customer j. 
 
Variables 

 
  

 
An integer programming formulation of the problem of routing to minimize cost subject to vehicle 
capacity constraint is given below. 
 
Minimize  

 
 
 
 
 
subject to 
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Two well known combinatorial optimization problems are embedded within this formulation. 
Constraints (2)-(4) are the constraint of a generalized assignment problem and ensure that each route 
begins and ends at the depot (customer 0), that every customer is serviced by some vehicle, and that the 
load assigned to a vehicle is within its capacity. If the yik are fixed to satisfy (2) – (4), then for given k, 
constraint (5)-(8) define a travelling salesman problem over the customers assigned to vehicle k.   
 
 
4. Computational Work 

For the purpose of comparison of heuristics, we have considered two datasets for the VRP, in 
which the number of customers is 9 and 15 respectively, with the demands given for each customer. The 
distances between the customers, as well as from the depot to each customer, is also given. The 
objective is to minimize the overall transportation cost by satisfying the demand of each customer. 
Without loss of generality, we have considered the transportation cost proportional to the distance 
travelled. The two VRP instances were solved using three classical heuristics, namely (a) the parallel 
savings algorithm, (b) the generalized assignment heuristic, and (c) the location based heuristic.  

Parallel Saving Algorithm (Altinkemer and Gavish, 1991) The algorithm is based on the idea of 
maximum savings that can be obtained by merging two trips. The original savings approach (Clarke and 
Wright, 1964) was used in the TSP context. In the VRP context, the sequential, single-tour merging 
procedure is replaced by a matching-based procedure that merges multiple partial solutions in each step. 

Generalized Assignment Heuristic (Fisher and Jaikumar, 1981) An assignment of customers to 
vehicles is obtained by solving a generalized assignment problem with an objective function that 
approximates delivery cost. The algorithm is guaranteed to find a feasible solution, if one exists. 

Location Based Heuristic (Bramel and Simchi-Levi, 1995) This heuristic is based on formulating 
the routing problem as a location problem commonly called the capacitated concentrator location 
problem (CCLP). This location problem is subsequently solved and the solution is mapped back to the 
original vehicle routing problem.  
 

k = 1,….,K 
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The same two problems were also solved by our proposed column generation approach based on 
Lagrangian multipliers obtained from a restricted master problem. Finally, for benchmarking purpose, 
the problems were solved using an enumeration approach that provides the optimal solution for these 
two instances. The results obtained by the five different methods are then compared. Finally solutions to 
the problems were also obtained by using the Genetic Algorithm approach developed for a multi-vehicle 
capacitated TSP (Vachajitpan, 2008). 

5. Column Generation Based Heuristic 

We propose a heuristic based on the well known column generation approach to solve the CVRP. 
In this approach, each column represents a distribution plan that services a subset of demand centers. 
When the vehicle capacity is large enough to satisfy all customer demands in a single tour, the problem 
reduces to the classical Travelling Salesman Problem (TSP). Due to the limited vehicle capacity, a 
decision needs to be made regarding the optimal assignment of demand centers to the distribution plans. 
Further, each distribution plan represents an embedded TSP that needs to be solved to determine the 
sequence of visits made to the customers by the vehicle. 
 

Since the number of columns can be arbitrarily large, a restricted master problem is used to 
initiate the computations. A sub-problem is then solved to generate additional columns for the master 
problem. The sub-problem uses the dual price information from the master problem to generate 
promising (that is, those that can lead to savings) columns that are also feasible (that is, satisfy the 
vehicle capacity constraint). However, due to the inherent complexity of this combinatorial problem, 
there is no guarantee that the selected columns will constitute the optimal (in terms of highest savings) 
subset of columns forming the basis in the master problem. Further, even if we know that this set of 
columns is optimal, one needs to solve a TSP for each of these columns to generate the optimal sequence 
of visits and the corresponding optimal total cost for the subset of centers covered by each column. 
Since optimality is not guaranteed, one needs to rely on heuristics to obtain a reasonably good sequence 
of customer visits within a column. Here we examine an approach for generating “good” columns (or 
distribution plans) together with heuristics for sequencing the customers within each distribution plan. 
 
Formulation

A restricted master problem is used to determine the cost-optimal set of columns from out of a 
set of columns that covers each customer exactly once. 
Notation 
S : Set of all customers, S = { i } 
Qi : Demand of customer, i, for i  S 
Dj : jth distribution plan (column vector) 
dij : individual elements of Dj with dij  = 1, if Dj services customer i, and 0 otherwise 
DP : { j  | Dj exists } 
Xj : { 0, 1} representing the selection or otherwise of  plan Dj. 
K : Capacity of vehicle 
Cj : TSP cost of plan Dj 
TC : Total Cost  

i :  Lagrangian multiplier for customer i 
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The formulation for the restricted master problem is as follows: 
Minimum 

 
 
subject to: 
        

 
      

 
Initially, each customer demand is satisfied by a dedicated trip, thus, D is an identity matrix with 

each column Dj having a value 1 in row i corresponding to customer i. During implementation, only the 
first constraint is explicitly stated in the master problem, while the second constraint is always 
guaranteed to be satisfied by the subproblem that generates dij for the new column. The master problem 
generates the dual prices that are used as Lagrangian multipliers for the subproblem. The subproblem is 
another optimization problem that generates the most promising column for improvement of solution to 
the master problem. 

 
Subproblem formulation 

Maximize  

 
subject to  

 
 
The column generated by the subproblem is added to the master problem, and solved again. The 

revised dual prices are used to solve another subproblem. The process is repeated iteratively until no 
more columns can be found that can improve the solution to the master problem. 
 
 
6. Genetic Algorithm Based Solution 

 
The solutions for the problems were also obtained by using the Genetic Algorithm (Holland, 

1975 and Goldberg, 1989) which is available with the Excel Solver software. Starting with an arbitrarily 
feasible solution, the improved solutions are obtained with successive rounds of computation until no 
further improvement is found. Since GA is a meta heuristic procedure, it does not guarantee to find the 
optimum. However, by starting from different solutions we can obtain very good final solutions for the 
problems. The best result by GA approach for problem 1 (for 9 customers) is the same as the minimum 
result obtained by complete enumeration approach. For problem 2 (for 15 customers) the best results 
were obtained for 5 and 6 trips (vehicles) as shown in Table 4. 
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7. Optimum Method: Complete Enumeration 
 

In order to compare the results obtained by all above heuristics, there is a need to first generate 
the optimum solution so that the exact deviation can be measured. However, for the CVRP it is not 
possible obtain the exact solution for large problems. Hence, two small sized problems have been 
selected to produce optimum solution: Problem 1 is for 9 customers and Problem 2 is for 15 customers. 
 

A complete enumeration approach is used for obtaining optimal solution. The algorithm works in 
two phases: In the first phase, all feasible columns, that is, those columns that satisfy the vehicle 
capacity constraint are generated. While generating the next permutation systematically, an efficient 
algorithm is used that minimizes the time spent in swapping elements. The number of customers in a trip 
can vary from 1 to n, however, the number of customers is restricted based on the vehicle capacity so as 
to generate only a small set of routes that are feasible. After the route is generated, another permutation 
routine is used upon the customers within this route to obtain the optimal TSP length of the route. In the 
second phase, we examine systematically all combinations of routes that ensure feasibility of VRP, that 
is, each customer must be visited and exactly once. Combinations that do not satisfy this criterion are 
discarded. Out of these combinations of routes, the one with the smallest overall cost is identified as the 
optimal route.  The entire logic was coded and tested in “C” Language.  
 

8. Computational Results 

Computational tests were performed using two test problems taken from the literature. Summary 
characteristics of the two problems are given in the following Tables. 
 
Table 1 Summary of Problem Characteristic 

 
Problem No. of 

Customer 
Demand of each 

customer 
No. of 

Vehicle 
Maximum Capacity of the 

vehicle 
1 9 1 unit each 3 4 unit 
2 15 Refer Table 2 5 and 6 200 units 

 
 
Table 2 Demand of Each Customer for Problem 2 
 
 
 

 
 
Comparison of heuristics for the test problems1 and 2 can be seen in Tables 3 and 4. Relative 

performance of each heuristics without considering the complexity of its computation can be seen from 
the limited test results.  
 
 

Customer No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Demand in Units 50 80 20 100 45 70 35 55 60 75 80 120 65 15 90
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9. Conclusion 
 

The Capacitated Vehicle Routing Problem is a challenging unsolved problem and has 
attracted the attention of several researchers due to its immense practical importance. In this 
paper, we studied three classical heuristics and an optimal approach to this problem. In addition, 
we also propose a Column Generation Approach and the Genetic Algorithm for solving the 
CVRP. The performances of the heuristics are compared using 9 and 15-customer problems. The 
results indicate that no single heuristic is likely to give consistently better results, and there is 
scope for further research in this area that can improve upon these heuristics. 
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