An Energy End-Use Demand Model for Predicting the Fuel Usage in the Transport Sector of Thailand

by

Opart Gomonwattanapanich

Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Pattaya Campus, Chonburi, Thailand Tel: +66 (0)38 259 030-8, E-mail: gopart@engr.tu.ac.th

and

Pachern Jansa

Department of Mechanical Engineering and Industrial Innovation, School of Engineering, Sripatum University, Bangkok, Thailand

Abstract

In this article, a mathematical model is developed and implemented in software for predicting fuel demand in Thailand's transport sector at the end-use level. The model has been tested by using data from 2006-2012. The interface software was specifically developed for ease of use. In addition, the software was designed to allow the users to change the variables according to different conditions. The number of vehicles predicted by the model in 2010 matches the actual data with a slight difference of 0.4%. The fuel projection was 13% lower than reported data in 2010. The results from our model is also compared with a previous model [1] for the years 2010, 2015, and 2020. The projections in both number of vehicle and fuel consumption differ only 6%, 3% and 0.05% respectively from the previous work results. Furthermore, for the same period, the fuel consumption estimates differ 13%, 7% and 2% respectively from the previous work results.

Keywords: End-Use Model, Energy Demand, Transport Sector

1. Introduction

Thailand has a large number of vehicles on the roads and it is increasing every year. The increasing number of cars directly causes the increased demand for fuel energy. Based on Thailand's final energy consumption data, it is found that the transportation sector has the highest proportion of energy consumption compared to other sectors. Moreover, 90 percent of the transportation sector still relies on the use of refined oil which is imported from abroad. Over the years, the government and the Ministry of Energy have promoted a policy to push for energy consumption reduction in the transportation sector and also adopted a policy to develop alternative energy sources such as ethanol, biodiesel, and natural gas to fully meet the energy needs in the transportation sector. However, the productions of biodiesels are limited, and it is not sufficient. Therefore, crude oil is still the main fuel that Thailand needs to import continuously in the years ahead, as well as the natural gas to meet the demand and usage in the country. It is a worldwide effort to understand and analyze the relationships of various variables related with energy consumption in the transportation sector, and the data at the

end-use level such as vehicle usage, the number of vehicles according to the types of fuel used, fuel consumption, and income distribution of the population. This is a good start for predicting the future energy demand.

For prediction of end-use data, computer programs are often developed. In this study, a program is developed by using MATLAB SCILAB software. The program has two main components: database set and energy consumption prediction set.

2. Development of Energy Consumption Models at the User Level

For forecasting energy consumption requirements (E_D , ktoe), at the user level in the land transport sector, the equation of [1] is applied. It considers the relationship of the number of vehicles (N, vehicle), the average usage distance (S, km), and fuel consumption (F, l/vehicle-km). In order to forecast the energy demand, we classified the fuel consumption of vehicles in to 3 different cases as follows: 1) by usage area (Bangkok, Rural), 2) by the use of fuel types (gasoline, diesel, LPG and CNG), and 3) by vehicle type (private car which no more than 7 people (sedan), private car which more than 7 people (microbus & passenger van), private van and pick up, motor tricycle, urban taxi, fixed route taxi, motor tricycle taxi, business taxi, motorcycles, tractor, fixed route bus, non fixed route bus, private bus, small rural bus, non fixed route truck, private truck, and etc.)

Considering the above conditions, the model we developed can be written as equation 1.

$$E_{p} = \sum_{i=1}^{2} \sum_{j=1}^{4} \sum_{k=1}^{17} N_{i,j,k} \times S_{i,k} \times F_{i,j,k}$$
(1)

Where i represents the usage area, j represents the fuel type, and k represents the type of vehicle. The number of vehicles ($N_{i,j,k}$, vehicle) in equation (1) is related to the gross domestic product (GDP, million), forecasting period (T = 1 In the year 2006), and the population (POP, person) as given in equation 2 [1].

$$N_{i,j,k} = e^{a} \times GDP^{b} \times e^{(t^{e})} \times POP$$
⁽²⁾

The symbols a, b, and c represent the coefficients that are constant in the model. The equations 1 and 2 were implemented as a set of programs. The program set has 4 steps: Step 1 (Program 1), as part of the calculation of the constant (a, b, and c) of the model, Step 2 (Program 2) is part of calculation of the forecast of the number of vehicles in the future, Step 3 (Program 3) is the part of calculation of fuel demand forecast, and Step 4 (Program 4) is the data display section. The program structure is shown in Figure 1. In the development of the program, we used images at the user interface (Graphic User Interface, GUI) to allow users to learn and use the program more easily. The user interface is shown in Figure 2.

Figure 1 Program structure

	MAIN MENU	
FILE	CALCULATION	OUTPUT
LOAD	OPTIMAL CONSTANTS	ESTMATION NUMBER OF VEHICL
EDIT	SUCKEY TO REBULK	ESTIMATION ENERGY DEMAND
SAVE ALL	ENERGY DEMAND	607

Figure 2 The user interface of "Main Menu"

The main menu of the program consists of three parts: 1) FILE: importing parts or customizing the base data, 2) CALCULATION: the calculation of various values, including the calculation of the model constants, forecasting the number of vehicles, and the fuel demand forecasting, and 3) OUTPUT: part of the data display.

3. Base Data Set

Data is needed for calculating the energy consumption such as average fuel consumption rate, the number of registered vehicles, gross domestic product, population size, and the average travel distance per year. The data is collected by searching websites, government agencies, and various reports. Part of data collected from a field survey is shown in Table 1 - 4.

 Table 1 Average Fuel Consumption [1]

	Average Fuel Economy (New/ vehicle-100 Micmeter) Bangkok area					
Vehicle Type						
nenikari katikari. N	Gesoline	Dissel	LPG	CNG		
Seder	8.=69	80257	10.3515*	9,3402		
Microbus & SUVs	8.1235	7 2 202	9.613/1	3,8546		
Van & Pick Up	8.0.51.5	7.326	0.7254	5,7761		
Matar trayde	8,3333	72907*	7.1429	9,0833		
Urbar-Taid	8,5985	13221	103872	9.3724		
Faved Rouse Tax	7,6923	6.7299	9,2975	8,3846		
Motor Ir cycle Taxl	a	69991	8.7194	8.72		
Jus ness Tad	6.5965	7 5227	8,5985	9.3724		
Matarajde	4,075			-		
Iractor		13.5612		-		
Fixed Roune Bus		9,1659	12.6594	2,3663		
Nor Reed Route Bus	1 2 1	958/1	13.2400	2.19/4		
Private Bus	-	9.542	13.1777	9.0507		
Small Flural Bus				-		
Nor Red Route Truck		10.8696		11.:073		
Private Truck		12.5628		12.8375		
Others	72562*	63492		7.1429		

Vahicla Type	Average Fuel Economy (Utar/ vehicle-100 Momete Provincial area				
	Gazolina	Climat	LPG	CNG	
Sedan	8,7336	81235	10	_	
Microbus & SUVs	83195	8244	10.0501*		
Wan & Pilnk Uga	8,/413	82305	10	-	
Matar trayale	8.3333	7.2907	7.1429	-	
Uitbar Taid	8.5985	7.5227	8.5985	- 20	
Fixed Rouse Tax	7,6923	6.5667	9.2925		
Motor troycle Taxi	5.685	4.9736	8,7194	-	
Bus news Taid	8,5985	(1921	81-985		
Molarcycle	4,7551	-	-	-	
Tracto		135612	1.0	-	
-tweed Rourse Blus	-	91659	12,6554		
Nor Fixed Route Bus	-	9.5877	13.2409°		
Private Bus		9.542	13.1777*		
Small Tural Bus	-	10.3199	14.3102*		
Nor Reed Route Truck	-	10.9696		23	
Private Truck		12.5628		-	
Others	72562"	6.3492	323	1	

No.	Vehicle Type	Area	Fuel Type	2006	2007	2008	2009					
				Gassolin	1618115	1644772	1587691	1307906				
			Diesel	259445	305313	350604	297495					
		Bangkok	LPG	25631	54703	255298	514687					
	Sedan		CNG	59	67	101	8					
1	(18.1)		Gessolin	1253701	1395411	1509647	1618704					
			Diesel	370610	496449	642205	716918					
		Provincial	LPG	13957	42965	220317	246047					
			CNG	30	43	79	103					
								Gassolin	24999	23168	20663	19351
		Acrobus Bengkok &	Diesel	140264	134009	128764	12052					
	Microbus		LPG	425	909	5571	6171					
	ě.		CNG	3	4	8	2					
2	Passenger	isenger Van	Gassolin	17647	17927	16820	1672					
	Van		Diesel	184118	199132	210516	221316					
	(18.2)	Provincial	LPG	419	1018	5119	6290					
			CNG	4	6	13	2					
			Gassolin	53897	490 74	39227	37734					
		Bengkok Van &	Diesel	1005628	1056649	1004360	969693					
	Van &		LPG	1376	3897	20930	22995					
			CNG	7	12	124	638					
3	Pick Up		Gassolin	235347	259137	229510	223725					
	(18.3)		Diesel	3093127	3523610	3827820	4130042					
		Provincial	LPG	1440	7164	32854	39255					
			CNG	2	11	73	322					

 Table 2 Number of Registered Vehicles (all 17 types) [2]

No.	Vehicle Type	Anse	Fue. Type	2010	2011	2012
		Bangkok	Gessolin	1586454	1689761	1704064
			Diesel	978597	420271	464143
			LIPG	28562/	358821	38/804
	Sedan		CNG	113	111	89
1	(1111)		Gradin	1807321	2024317	2231934
	100707-20074		Clesel	849088	1004878	1184974
		Provinciel	LPG	\$18265	419478	498910
_			ONG	122	136	125
			Gessolin	19131	19318	17653
		Victobus Bengkok Be Van (SIL2) Provincial	Chesel	122357	127575	125141
	MICTODUS		IPG	7250	8585	9745
	82 		CNG	50	60	67
2	-lassenger		Gessolin	16666	16213	15828
	van		Dead	233662	244152	253930
	[38.2]		LIRG	8151	10396	12516
_		CNG	32	72	91	
			Gassolin	3.5414	3.2257	33543
	Van Z	Diesel	937867	961818	911744	
		Bengkok	LPG	27215	\$7250	46440
			CNG	2879	.5161	5579
,	Maxup		Gessolin	215605	211,560	201811
	[303]	Dentert	Diesel	4358934	4672725	4889090
		HOWINGEL	IPG	49055	66.54.2	95944
			ONG	3353	1286	1883

Table 3 Gross Domestic Product and Population [3]

GDP and POP Data		Year	Year	Year	Year
No.	Type	2005	2007	2008	2009
1	Gross Domestic Product, GDP (Willion Baht)	7,844,939	8,525,197	9,080,466	9,041,551
2	Population (Person)	62,828,706	63,038,247	63,389,730	63,525,062

GD	P and POP Data	Year	Year	Year
No.	Туре	2010	2011	2012
1	Grass Donnestic Product, GDP (Million Baht)	10,104,821	10,540,134	11,375,349
2	Papulation (Person)	63,878,267	64,076,033	64456695

 Table 4 Average Travel Distance per Year *

Vehicle Type	Bangkok	Rural
Sedan	19,630.45	18,131.58
Microbus & Passenger Van	23,431.07	28,087.67
Van & Pick Up	19,145.85	23,943.96
Motor Tricycle	15,170.18	17,093.66
Urban Taxi	54,391.38	63,592.51
Fixed Route Taxi	21,537.96	20,681.12
Motor tricycle Taxi	28,457.07	16,853.16
Business Taxi	21,484.98	19,891.78
Motorcycle	6,328.13	6,393.65
Tractor	0	0
Fixed Route Bus	62,466.24	60,928.04
Non Fixed Route Bus	43,601.90	35,457.47
Private Bus	33,421.90	31,769.60
Small Rural Bus	0	47,759.90
Non Fixed Route Truck	34,345.91	74,040.51
Private Truck	33,852.96	62,656.87
Others	11,723.97	12,139.51

*From Field Survey

4. Results of the Model

The predicted results obtained from our model program was compared with the actual data in the past. We also compared the forecast results with the results from previous research by J. Pongthanaisawan et al [1]. The comparisons are shown in Table 5 and 6.

Table 5 Comparison of the Number of Vehicles Calculated from the Model with Actual Data and the Results of Previous Research

	Total Number of Vehicle (unit)					
Year	Actual	Reference [1]	Model			
2006	20,798,210		21,120,893			
2007	22,256,971		22,423,187			
2008	23,731,614		23,742,696			
2009	24,604,117		25,052,366			
2010	26,108,840	30,654,653	26,360,064			
2011	28,129,467		27,674,080			
2012	29,424,329		29,001,044			
2013			30,346,184			
2014			31,713,726			
2015		36,390,540	33,107,183			
2016			34,529,567			
2017			35,983,527			
2018			37,471,445			
2019			38,995,509			
2020		42,609,287	40,557,758			

The forecast number of vehicles is compared with the actual data (during the years 2006 - 2012) in Table 5. The calculated results from the model are very close to the real data. The average difference between the calculated and actual data is only about 0.4 percent. The forecast in year 2010 was slightly higher than the actual data and is more accurate than the forecast of J. Pongthanaisawan et al [1]. The forecasts in year 2015 and 2020 are lower than J. Pongthanaisawan et al [1] with a difference of 3 and 0.05 percent respectively.

	Total Energy Demand (ktoe)					
Year	Actual	Reference [1]	Model			
2006	21,793		18666			
2007	22,445		20130			
2008	22,090		21488			
2009	23,563		22776			
2010	23,847	24,627	24029			
2011	25,118		25271			
2012	27,158		26517			
2013			27779			
2014			29063			
2015		29,150	30378			
2016			31728			
2017			33117			
2018			34550			
2019			36030			
2020		34,386	37560			

Table 6 Comparison of the Amount of Fuel Calculated from the Model with Actual Data and the Results of Previous Research

Calculated fuel consumption forecasts by the model and actual data are compared in Table 6. The results from the model were found to be lower than the actual data with an average difference of about 13 percent and the predictions of previous research for the year 2010 showed that the values were close to the actual data. For the calculated fuel consumption from the model being lower than the actual data since the amount of fuel actually sold in all countries, in Thailand as well, includes some parts that are not used for transportation vehicles on the road and might be used in agriculture or other forms of transportation. For the forecast period, which is from the year 2010 onwards, the forecast results of the model are compared to the results of the previous three years of research: 2010, 2015, and 2020. It was found that the values to be more similar when the forecast period was longer, with a difference of 13, 7 and 2 percent respectively.

5. Conclusion

The forecast of number of vehicles obtained from the developed model is close to both the actual data and the results from J. Pongthanaisawan et al [1]. For the amount of fuel, it was found that the results from the model were reasonable when compared to the actual data. However, the values obtained in the predicted calculations were slightly less than the actual values. The amount of fuel data actually contained the use of fuel in areas other than the use of vehicles on the road. Therefore, the actual amount of fuel sold must be higher than the amount used by the road vehicles. It was concluded that the developed model was reasonable and reliable to be used as a guideline for predicting the energy consumption forecasts at the user level. As future research, we plan to collect recent data and update our model if needed.

References

[1] Jakapong Pongthanaisawan, Chumnong Sorapipatana and Bundit Limmeechokchai (2011). Land Transport Demand Analysis and Energy Saving Potentials in Thailand, paper presented in *The 2nd Joint International Conference on "Sustainable Energy and Environment (SEE 2006)"*, Bangkok, Thailand.

[2] Transport Statistics Group Planning Division Department of Land Transport, number of registered vehicles, [Online system], source http://apps.dlt.go.th/statistics_web/vehicle.html, Access on 10/05/2556.

[3] Bureau of Registration Administration Department of Administration, Population Announcement, [Online System], Source http://stat.bora.dopa.go.th/stat/sumyear.html, Access on 10/05/2556.